Mean classification acc. (%) evaluation of different methods on the MNIST, FMNIST, and CIFAR10 dataset.

MNIST FMNIST CIFAR10
FedAvg 92.62 80.58 55.65
FedProx 92.57 80.50 55.10
AvgKD 92.81 77.12 26.36
FedDF 91.39 58.81 57.17
LG-FedAvg 92.71 80.61 54.49
GeFL (FedDCGAN) 95.32 83.11 58.45
GeFL (FedCVAE) 94.46 82.33 55.80
GeFL (FedDDPMw=0) 96.44 82.43 59.36
GeFL (FedDDPMw=2) 95.17 81.51 58.47

Mean classification acc. (%) comparison to data augmentation. GeFL outperforms other baselines and is effective combined with data augmentation.

FedAvg GeFL (FedDCGAN)
None 55.65±0.68 58.45±0.49
MixUp 60.07±1.13 62.67±0.24
CutMix 58.95±0.61 61.66±0.41
AugMix 53.96±0.37 56.47±0.25
AutoAugment 56.99±0.43 59.97±0.38

Scalability in client numbers of GeFL and GeFL-F on MNIST, FMNIST, SVHN, and CIFAR dataset. GeFL-F exhibits less performance degradation in a large number of clients compared to GeFL.

drawing
MNIST
drawing
FMNIST
drawing
SVHN
drawing
CIFAR10

Comparison of privacy, communication and computational costs in GeFL and GeFL-F. Lower values indicate better conditions for each component.

drawing