Reinforcement Learning: Markov Decision Process

AI/ML Teaching

Goals

• Brief concept of Reinforcement Learning (RL)

Markov Decision Process (MDP) for RL

Why model-free RL?

Reinforcement Learning (RL)

- No supervisor, only a reward
- Feedback can be delayed
- Agent's actions affect the subsequent data it receives

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
 - May be better to sacrifice immediate reward go gain more long-term reward

Agent and Environment

- Agent at step t
 - Receives observation O_t
 - Executes action A_t
 - Receives reward R_t
- Environment
 - Receives observation A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}

• State is a function of the history $(O_1, R_1, A_1, ... A_{t-1}, O_t, R_t)$

Markov Decision Process

- Markov decision processes (MDPs) formally describe an environment for RL where the environment is <u>fully observable</u>
 - Real world is partially observable
 - Well-defined environment/state or summarized state → Markov approximation
 - Mathematically tractable
- Markov state: A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

- Future is independent of the past given the present
- The state is a sufficient statistic of the future

Markov State Example

Markov Process (or Markov Chain)

- Markov Process is a memoryless random process
 - Tuple $\langle \mathcal{S}, \mathcal{P} \rangle$
 - S: set of state $(S_1, S_2, ...)$
 - \mathcal{P} : state transition probability matrix

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

$$\mathcal{P} = \textit{from} egin{bmatrix} \textit{to} \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

Markov Chain Example

Markov Reward Process

- Markov chain with values
- Markov Reward Process: Tuple (S, P, R, γ)
 - S: set of state $(S_1, S_2, ...)$
 - \mathcal{P} : state transition probability matrix
 - \mathcal{R} : reward function $(\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s])$
 - γ : discount factor
- Return $G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
 - γ close to 0 leads to myopic evaluation
 - γ close to 0 leads to far-sighted evaluation

Value function

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

$$egin{aligned} v(s) &= \mathbb{E}\left[G_{t} \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + ... \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + ... \right) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1$$

Bellman Equation

$$\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

where v is a column vector with one entry per state

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

$$egin{aligned} \mathbf{v} &= \mathcal{R} + \gamma \mathcal{P} \mathbf{v} \ & (\mathbf{I} - \gamma \mathcal{P}) \, \mathbf{v} &= \mathcal{R} \ & \mathbf{v} &= (\mathbf{I} - \gamma \mathcal{P})^{-1} \, \mathcal{R} \end{aligned}$$

Markov Decision Process

- Markov chain with values
- Markov Reward Process: Tuple $\langle S, A, P, R, \gamma \rangle$
 - S: set of state $(S_1, S_2, ...)$
 - \mathcal{A} : set of actions
 - \mathcal{P} : state transition probability matrix
 - $\mathcal{P}_{SS'}^{\mathbf{a}} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = \mathbf{a}]$
 - \mathcal{R} : reward function $(\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a])$
 - γ : discount factor

Policies

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - $\mathcal{P}_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}_{ss'}^{a}$
 - $\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$

Value function

State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Action-value function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

Bellman Expectation Equation

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

$$q_{\pi}(s,a) \leftrightarrow s,a$$
 r
 $v_{\pi}(s') \leftrightarrow s'$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$
 $q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$

Bellman Expectation Equation

Optimal Value Function

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Optimal Value Function

Optimal Action-Value Function

Optimal Policy

$$\pi_*(a|s) = \left\{egin{array}{ll} 1 & ext{if } a = rgmax \ q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

Bellman Optimality Equation

$$q_*(s,a) \longleftrightarrow s,a$$
 r
 r
 r
 r
 r

$$egin{aligned} v_*(s) &= \max_a \, q_*(s,a) \end{aligned} \qquad egin{aligned} q_*(s,a) &= \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \end{aligned} \qquad egin{aligned} \max_a \, \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \end{aligned} \qquad egin{aligned} q_*(s,a) &= \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} \, q_*(s',a') \end{aligned}$$

Bellman Optimality Equation

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

- Bellman Optimality Equation is non-linear
- No closed form solution
- Many iterative solution methods
 - Value/policy iteration
 - Q-learning
 - SARSA
- Bellman Expectation Equation ($v = \mathcal{R} + \gamma \mathcal{P}v$)
 - Usually, $\mathcal R$ and $\mathcal P$ are unknown (model-free)
 - Too many states → infeasible

$$v^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v^{\pi}(s')]$$

Also should be iterative

Reference

• David Silver, COMPM050/COMPGI13 Lecture Notes