Linear Regression

AI/ML Teaching

Goals

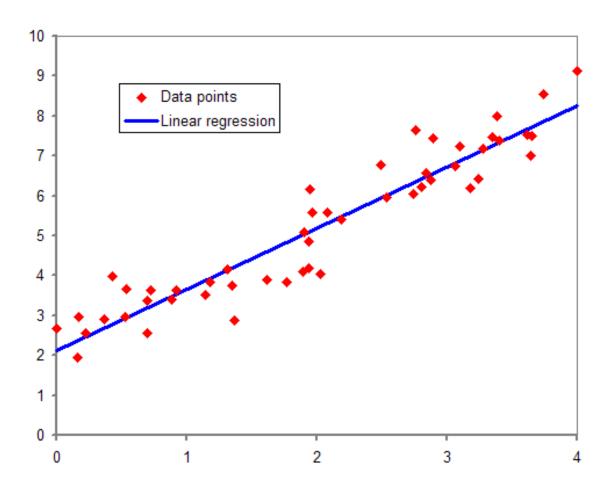
• Basic concept of linear regression

• Estimating parameters with linear models

• Linear regression in PyTorch

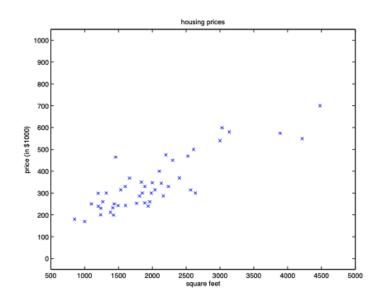
Regression

In statistical modeling, **regression analysis** is a set of statistical processes for estimating the relationships between a dependent variable (often called the *outcome* or *response* variable, or a *label* in machine learning parlance) and one or more error-free independent variables (often called *regressors*, *predictors*, *covariates*, *explanatory variables* or *features*).

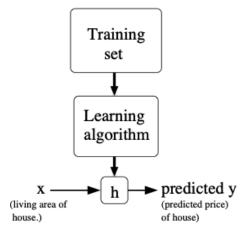


Supervised Learning

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:



- Input: *x*^(*i*)
- Output: *y*^(*i*)
 - Continuous → regression
 - Discrete → classification
- Training example $(x^{(i)}, y^{(i)})$
- Training set $\{x^{(i)}, y^{(i)}\}; i = 1, ... m$
- Given a training set, to learn a function $h: \mathcal{X} \to \mathcal{Y}$



Supervised Learning

- $h(x) = \theta x$
- Cost function: $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) y^{(i)})^2 \rightarrow \text{Least-square!}$
- $\min_{\alpha} J(\theta)$: minimum of quadratic function

•
$$\frac{\partial J(\theta)}{\partial \theta} = 0$$

• Learning algorithm

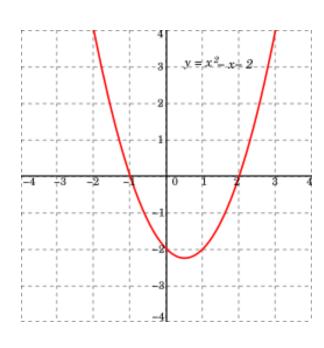
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

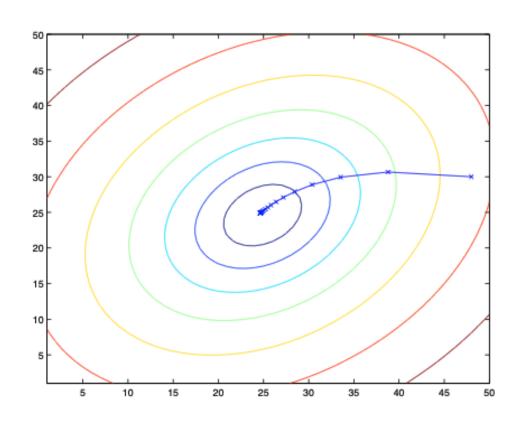
$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

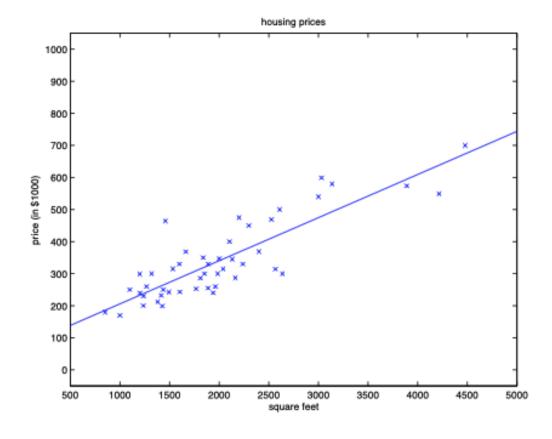
$$= (h_{\theta}(x) - y) x_{j}$$



Multi-variable: $h(x) = \theta_1 x + \theta_0$

• (Stochastic) gradient descent





Closed-form solution

$$X = \left[egin{array}{ccc} - (x^{(1)})^T - \ - (x^{(2)})^T - \ dots \ - (x^{(m)})^T - \end{array}
ight] . \qquad ec{y} = \left[egin{array}{ccc} y^{(1)} \ y^{(2)} \ dots \ y^{(m)} \end{array}
ight] .$$

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix} \cdot \qquad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \cdot \qquad = \begin{bmatrix} \frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y}) & = \frac{1}{2}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 \\ & = J(\theta) \\ \nabla_\theta J(\theta) & = \nabla_\theta \frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y}) \\ & = X^T X \theta - X^T \vec{y} \\ \theta = (X^T X)^{-1} X^T \vec{y}. \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Closed-form solution is possible because it is "linear" regression

Is this linear regression?

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Reference

Andrew Ng, CS229 Lecture Notes